Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
2.
Faraday Discuss ; 249(0): 440-452, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37791511

RESUMO

We examine quantitatively the solute-size dependences of the effective interactions between nonpolar solutes in water and in a simple liquid. The potential w(r) of mean force and the osmotic second virial coefficients B are calculated with high accuracy from molecular dynamics simulations. As the solute diameter increases from methane's to C60's with the solute-solute and solute-solvent attractive interaction parameters fixed to those for the methane-methane and methane-water interactions, the first minimum of w(r) lowers from -1.1 to -4.7 in units of the thermal energy kT. Correspondingly, the magnitude of B (<0) increases proportional to σα with some power close to 6 or 7, which reinforces the solute-size dependence of B found earlier for a smaller range of σ [H. Naito, R. Okamoto, T. Sumi and K. Koga, J. Chem. Phys., 2022, 156, 221104]. We also demonstrate that the strength of the attractive interactions between solute and solvent molecules can qualitatively change the characteristics of the effective pair interaction between solute particles, both in water and in a simple liquid. If the solute-solvent attractive force is set to be weaker (stronger) than a threshold, the effective interaction becomes increasingly attractive (repulsive) with increasing solute size.

3.
J Chem Phys ; 156(22): 221104, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705398

RESUMO

To gain quantitative insight into how the overall strength of the hydrophobic interaction varies with the molecular size, we calculate osmotic second virial coefficients B for hydrophobic spherical molecules of different diameters σ in water based on molecular simulation with corrections to the finite-size and finite-concentration effects. It is shown that B (<0) changes by two orders of magnitude greater as σ increases twofold and its solute-size dependence is best fit by a power law B ∝ σα with the exponent α ≃ 6, which contrasts with the cubic power law that the second virial coefficients of gases obey. It is also found that values of B for the solutes in a nonpolar solvent are positive but they obey the same power law as in water. A thermodynamic identity for B derived earlier [K. Koga, V. Holten, and B. Widom, J. Phys. Chem. B 119, 13391 (2015)] indicates that if B is asymptotically proportional to a power of σ, the exponent α must be equal to or greater than 6.


Assuntos
Água , Interações Hidrofóbicas e Hidrofílicas , Osmose , Soluções/química , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...